A NOTE ON sg* CONTINUOUS MAPPINGS IN SOFT TOPOLOGICAL SPACES

V. Ramya and R. Asokan

School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India

Abstract: The aim of this paper is to introduce sg^* closed set in a Soft topological space and to study some of its properties. Then sg^* continuous mapping and irresolute mapping areintroduced and some of its properties are studied. The concept sg^* open, sg^* closed mappings and sg^* homeomorphism are introduced and their properties are studied.

Key-Words: sg* continuous mapping, irresolute mapping, sg* homeomorphism

Subject Classification: 2010MSC: 54C08, 54C10

1. INTRODUCTION

The theory of soft sets gives a vital mathematical tool for handling uncertainties and vague concepts. In the year 1999, Molodtsov[1] initiated the study of soft sets. Soft set theory has been applied in several directions. Following this Maji, Biswas, and Roy[7,8] discussed soft set theoretical operations and gave an application of soft set theory to a decision making problem. Recently Muhammad Shabir and Munazza Naz introduced the notion of soft topology[10] and established that every soft topology induces a collection of topologies called the parametrized family of topologies induced by the soft topology. Several mathematicians published papers on applications of soft sets and soft topology [1,2,6,11,12,1]. Soft sets and soft topology have applications to data mining, image processing, decision making problems, spatial modeling and neural patterns[3,4,5,7]. In this paper, the concept sg^* closed set is introduced in soft topological space and the concept of sg* continuous mapping and sg^* irresolute mapping are introduced and some of their properties are studied. Further the concept sg^* open , sg^* closed mappings and sg^* homeomorphism are introduced and some of their basic soft topological properties are investigated. Finally the concept of slightly sg^* continuous mapping is introduced and studied some of its basic concepts.

2. PRELIMINARIES

2.1 Definition A soft set (A, E) is called sg* closed in a soft topological space (X, \tilde{r}, E) of $cl(A, E) \cong (U, E)$ whenever $(A, E) \cong (U, E)$ and (U, E) is soft g open in \tilde{X} .

2.2.1 Let
$$X = \{a_1, a_2, a_3\}, E = \{b_1, b_2\}$$
 and
 $\tilde{r} = \{\tilde{\phi}, \tilde{X}, (A_1, E), (A_2, E), (A_3, E), (A_4, E), (A_5, E), (A_6, E), (A_7, E)\}$ where
 $(A_1, E) = \{(b_1, \{a_2\}), (b_2, \{a_1\}), (A_2, E) = \{(b_1, \{a_2\}), (b_2, X)\}$
 $(A_3, E) = \{(b_1, \{a_{2,3}\}), (b_2, \{a_{2,a_3}\})\}, (A_4, E) = \{(b_1, \{a_{1,a_3}\}), (b_2, X)\},$
 $(A_5, E) = \{(b_1, \phi) \{b_2, \{a_1\}), (A_6, E) = \{(b_1, \phi) \{b_2, \{a_{2,a_3}\}) \}$ and
 $(A_7, E) = \{(b_1, \phi), (b_2, X)\}.$

Clearly $(A, E) = \{(b_1, \{a_{1,3}\})(b_2, \{a_3\})\}$ is sg* closed in $(X, \tilde{r} E)$.

since for (A,E) there exists a soft g open set $(U,E) = \{(b_1, \{a_1,a_3\}, (b_2, \{a_2,a_3\})\}$ such that $cl(A,E) \cong (U,E)$.

2.1 Theorem

Every soft closed set is sg* closed in a soft topological space $(X, \tilde{r} E)$.

3. sg* CONTINUOUS MAPPINGS

3.1 Definition

A soft mapping $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ is called sg^{*} continuous if $\mathbf{f}^1(U, E)$ is sg^{*} closed in $(\mathbf{X}, \tilde{r}, E)$ for every soft closed set (U, E) of $(\mathbf{X}, \tilde{\omega}, E)$.

3.2. Theorem

Let $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ be a soft mapping from soft topological space $(\mathbf{X}, \tilde{r}, E)$ into a soft topological space $(\mathbf{X}, \tilde{r}, E)$. Then the following statements are equivalent.

- i) $f: \tilde{X} \to \tilde{Y}$ is sg^{*} continuous.
- ii) The inverse image of each soft open set in \tilde{Y} is sg^{*} open in \tilde{Y} .
- iii) For each soft subset $(A, E) \in (Y, \tilde{\omega}, E) sg^* cl(\mathbf{f}^{-1}(A, E)) \subseteq \mathbf{f}^{-1} cl(A, E))$.

iv) For each soft subset $(B, E) \in (X, \tilde{r}, E) \mathbf{f}(sg^*cl(B, E)) \subseteq cl(\mathbf{f}(B, E))$.

Proof (i) \rightarrow (ii) follows from 3.1 Definition.

(i)→(iii)

Let (A, E) be a soft subset of $(Y, \tilde{\omega}, E)$. By 3.2.1 Definition $\mathbf{f}^{-1} c(A, E)$ is a sg* closed set containing $\mathbf{f}^{-1} (A, E)$ and $sg^*cl (\mathbf{f}^{-1} (A, E)) \cong \mathbf{f}^{-1} cl(A, E)$.

 $(iii) \rightarrow (iv)$

Let $(B, E) \in (Y, \tilde{r}, E)$, then $\mathbf{f}(B, E) \in (Y, \tilde{\omega}, E)$ Hence from (iii) $sg^*cl(\mathbf{f}^{-1}(\mathbf{f}(B, E)) \subseteq \mathbf{f}^{-1}(cl(A, E))$. Therefore $\mathbf{f}(sg^*cl(B, E)) \subseteq clf(B, E)$.

$$(iv) \rightarrow (i)$$

Let (U,E) be a soft closed set in \tilde{Y} . Then by (iv)

 $\mathbf{f}(sg^*cl(\mathbf{f}^{-1}(U,E))) \cong cl(\mathbf{f}(\mathbf{f}^{-1}(U,E)) \quad . \quad \text{Hence} \quad sg^*cl(\mathbf{f}^{-1}(U,E) \cong \mathbf{f}^{-1}(U,E).$ Therefore $\mathbf{f}^{-1}(U,E)$ is a sg* closed set in $\tilde{\mathbf{X}}$.

3.3 Theorem

Let $f: \tilde{X} \to \tilde{Y}$ be a soft continuous mapping from \tilde{X} into \tilde{Y} . Then it is sg* continuous.

Proof

 $(i) \rightarrow (ii)$ follows from 3.1 Definition.

(i)→(iii)

Let (A, E) be a soft subset of $(Y, \tilde{\omega}, E)$. By 3.1 Definition $\mathbf{f}^{-1}(cl(A, E))$ is a sg* closed set containing $\mathbf{f}^{-1}(A, E)$ and $sg^*cl(\mathbf{f}^{-1}(A, E)) \cong \mathbf{f}^{-,\{1\}}(cl(A, E))$.

 $(iii) \rightarrow (iv)$

Let $(B, E) \cong (X, \tilde{r}, E)$. Then $\mathbf{f}(B, E) \in (Y, \tilde{\omega}, E)$. Hence from (iii) $sg^*cl(\mathbf{f}^{-1}(\mathbf{f}(B, E)))$ $\cong \mathbf{f}^{-1}(clf(B, E))$. Therefore $\mathbf{f}(sg^*cl(B, E)) \cong clf(B, E)$.

 $(iv) \rightarrow (i)$

Let (U,E) be a soft closed set in \tilde{Y} . Then by (iv)

 $\mathbf{f}(sg^*cl(\mathbf{f}^{-1}(U,E))) \cong cl(\mathbf{f}(\mathbf{f}^{-1}(U,E)))$. Hence $g^*cl(\mathbf{f}^{-1}(U,E)) \cong \mathbf{f}(U,E)$.

Therefore $f^{-1}(U, E)$ is a sg* closed set in \tilde{X} .

3.4 Theorem

Let $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ be a soft continuous mapping from $\tilde{\mathbf{X}}$ into \tilde{Y} . Then it is sg^{*} continuous.

Proof

Let (A, E) be any soft closed set in \tilde{Y} . Then $f^{-1}(A, E)$ is soft closed in \tilde{X} . Therefore by 2.1 Theorem, $f^{-1}(A, E)$ is sg^{*} closed in \tilde{X} .

3.5 Example

The following example shows that the converse of the above 3.2.2 Theorem need not be true.

Let $X = \{a_1, a_2, a_3\}, Y = \{a_1, a_2, a_3\}, E = \{b_1, b_2\}$ and

$$\widetilde{r_1} = \{\widetilde{\emptyset}, \widetilde{X}, (B_1, E), (B_2, E), (B_3, E), (B_4, E), (B_5, E)\}$$

 $\tilde{r_1} = \{ \widetilde{\emptyset}, \widetilde{X}, (A_1, E), (A_2, E), (A_3, E), (A_4, E), (A_5, E), (A_6, E) \}$ be two soft topological spaces over X and Y respectively. Then $(B_1, E), (B_2, E), (B_3, E), (B_4, E), (B_5, E)$ are soft sets over X and $(A_1, E), (A_2, E), (A_3, E), (A_4, E), (A_5, E)$ are soft sets over Y defined as follows:

$$(A_{1}, E) = \{(b_{1}, \{a_{2}, a_{3}\}), (b_{2}, \{a_{1}, a_{3}\})\}, (A_{2}, E) = \{(b_{1}, \{a_{3}\}), (b_{2}, \{a_{1}\})\}, (A_{3}, E) = \{(b_{1}, \{a_{2}\}), (b_{2}, \{a_{3}\})\}, (A_{4}, E) = \{(b_{1}, \{a_{3}\}), (b_{2}, \emptyset)\}, (A_{5}, E) = \{(b_{1}, X), (b_{2}, \{a_{1}, a_{3}\})\}, (A_{6}, E) = \{(b_{1}, \{a_{2}, 3\}), (b_{2}, \{a_{3}\})\}, (B_{1}, E) = \{(b_{1}, \{a_{2}\}), (b_{2}, \{a_{1}\})\}, (B_{2}, E) = \{(b_{1}, \{a_{3}\}), (b_{2}, \{a_{1}, a_{3}\})\}, (B_{3}, E) = \{(b_{1}, \{a_{2}, a_{3}\}), (b_{2}, \{a_{1}, a_{2}\})\}, (B_{4}, E) = \{(b_{1}, X), (b_{2}, \{a_{1}, a_{2}\})\}, (B_{4}, E) = \{(b_{1}, X), (b_{2}, \{a_{1}, a_{2}\})\}, (B_{5}, E) = \{(b_{1}, \emptyset), (b_{2}, \{a_{1}\})\}.$$

Let $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ be a soft mapping defined by $\mathbf{f}(a_1) = a_1$, $\mathbf{f}(a_2) = a_3$, and $\mathbf{f}(a_3) = a_2$. Then \mathbf{f} is sg* continuous map but not soft continuous. Since $f^{-1}(A_1, E) = \{(b_1, \{a_{2,3}\}), (b_2, \{a_1, a_2\})\},\$

$$f^{-1}(A_2, E) = \{(b_1, \{a_2\}), (b_2, \{a_1\})\}, \qquad f^{-1}(A_3, E) = \{(b_1, \{a_3\}), (b_2, \{a_2\})\},\$$

$$f^{-1}(A_4, E) = \{(b_1, \{a_2\}), (b_2, \emptyset)\}, \qquad f^{-1}(A_5, E) = \{(b_1, X), (b_2, \{a_1, a_2\})\}, \\ f^{-1}(A_6, E) = \{(b_1, \{a_2, a_3\}), (b_2, \{a_2\}) \text{ are sg* open sets in } \tilde{r_1} \text{ but} \\ f^{-1}(A_3, E), f^{-1}(A_4, E), f^{-1}(A_5, E), f^{-1}(A_6, E) \text{ are not soft open sets in } \tilde{r_1}.$$

3.6 Theorem

If $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{\mathbf{x}}$ is a sg* continuous mapping from $\tilde{\mathbf{X}}$ into $\tilde{\mathbf{Y}}$ then \mathbf{f} is soft g continuous.

Proof Let (A, E) be any soft closed set in \tilde{Y} . Then $\mathbf{f}^{-1}(A, E)$ is sg* closed in \tilde{X} . Therefore by 2.1 Theorem $\mathbf{f}^{-1}(A, E)$ is soft g closed in \tilde{X} .

3.7 Definition

A soft mapping $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{\mathbf{c}}$ called sg* irresolute if $\mathbf{f}^{-1}(U, E)$ is sg* closed in $\tilde{\mathbf{X}}$ for every sg* closed set of $(Y, \tilde{\omega}, E)$.

3.8 Remark

A soft mapping $\mathbf{f}: \widetilde{\mathbf{X}} \to \widetilde{}$ is sg* irresolute if and only if the inverse image of every sg* open set in $(Y, \widetilde{\omega}, E)$ is sg* open in $\widetilde{\mathbf{X}}$.

3.9 Theorem If $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ and $h: \tilde{Y} \to \tilde{Z}$ are any two soft mappings then

- i) $h \circ g$ is sg* continuous if h is soft continuous and f is sg* continuous.
- ii) $h \circ g$ is sg* continuous if h is sg* continuous and g is sg* irresolute.
- iii) $h \circ g$ is sg* irresolute if both g and h are sg* irresolute.

Proof

(i) Let (U,E) be a soft closed set in \tilde{Z} . Then $h^{-1}(U,E)$ is soft closed in \tilde{Y} and $g^{-1}(h^{-1}(U,E)) = h^{\circ} g(U,E)$ is sg* closed in \tilde{X} .

(ii) Let (U,E) be a soft closed set in \tilde{Z} . Then $h^{-1}(U,E)$ is sg^{*} closed in \tilde{Y} and $g^{-1}(h^{-1}(U,E)) = h^{\circ} g(U,E)$ is sg^{*} closed in \tilde{X} .

(iii) Let (U,E) be a sg* closed set in \tilde{Z} . Then $h^{-1}(U,E)$ is sg* closed in \tilde{Y} and $g^{-1}(h^{-1}(U,E)) = h^{\circ} g(U,E)$ is sg* closed in \tilde{X} .

3.10 Theorem

A soft mapping $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ is sg^{*} irresolute if and only if for every soft subset (U, E) of $\tilde{\mathbf{X}}, (sg^* cl(U, E)) \cong sg^* cl(g(U, E)).$

Proof Let g be a sg* irresolute mapping and (U,E) be a soft subset in \tilde{X} . Then $sg^* c(g(U,E))$ is sg* closed set in \tilde{Y} . Hence $g^{-1}(sg^* cl(g(U,E)))$ is sg* closed in \tilde{X} and $(U,E) \subseteq -1(g(U,E)) \subseteq g^{-1}(sg^* cl(g(U,E)))$.

Therefore

 $sg^* cl(U, E) \subseteq g^{-1}(sg^* cl(g(U, E)))$, hence $g(sg^* cl(U, E)) \subseteq g^{-1}(sg^* cl(g(U, E)))$.

Conversely, suppose that (U,E) is sg^{*} closed in \tilde{Y} .

Therefore

 $(sg^* cl(g^{-1}(U,E))) \cong (sg^* cl(g(g^{-1}(U,E))) = sg^* cl(U,E) = (U,E).$ Hence $sg^* c(g^{-1}(U,E)) \cong g^{-1}(U,E).$

4. sg* HOMEOMORPHISMS

4.1 Definition

A soft mapping $f: \tilde{X} \to \tilde{i}$ is called sg* open if g(U, E) of each soft open set (U, E) in

 (X, \tilde{r}, E) is sg^{*} open in $(Y, \tilde{\omega}, E)$.

4.2 Definition

A soft mapping $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ is called sg^{*} closed if g(U, E) of each soft closed set (U, E) in $(\mathbf{X}, \tilde{r}, E)$ is sg^{*} closed in $(Y, \tilde{\omega}, E)$.

4.3 Theorem

Let the soft mappings $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ and $g: \tilde{Y} \to \tilde{Z}$ be bijective. If $g \circ \mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Z}$ is soft continuous and $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ is soft continuous and $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ is soft continuous and $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{Y}$ is sg* closed then $g: \tilde{Y} \to \tilde{Z}$ is sg* continuous.

Proof

Let (U,E) be the soft closed set in \tilde{Z} . Since $g \circ f: \tilde{X} \to \tilde{Z}$ is soft continuous, then $f^{-1}(g^{-1}(U,E)) = (g \circ f)^{-1}(U,E)$ is soft closed set in \tilde{X} . Since $f: \tilde{X} \to \tilde{i}$ is sg* closed, then $f(f^{-1}(g^{-1}(U,E))) = g^{-1}(U,E)$ is sg* closed set in \tilde{Y} .

4.5 Theorem

A soft mapping $\mathbf{f}: \tilde{X} \to \tilde{Y}$ is a sg* open iff if $\mathbf{f}(ikt(B,U)) \cong sg^*ikt(\mathbf{f}(B,E))$ for every soft subset (B,E) of \tilde{X} .

Proof

Let $\mathbf{f}: \widetilde{X} \to \widetilde{Y}$ be sg* open and (B, E) be a soft subset of \widetilde{X} , then ikt(B, U) is a soft open set in \widetilde{X} . Hence $\mathbf{f}(ikt(B, E)) = sg^*ikt (\mathbf{f}(ikt(B, E)))$.

Conversely, Let (G,E) be a soft open set in \tilde{X} . $\mathbf{f}(G,E) = \mathbf{f}(ikt(G,E)) \cong sg^*ikt (\mathbf{f}(G,E))$, which implies $\mathbf{f}(G,E) \cong sg^*ikt (\mathbf{f}(G,E))$. Hence $\mathbf{f}(G,E)$ is a sg* open in \tilde{Y} .

4.6 Definition

If a soft mapping $\mathbf{f}: \tilde{\mathbf{X}} \to \tilde{\mathbf{x}}$ is sg* continuous bijective and \mathbf{f}^{-1} is sg* continuous then *f* is said to be sg* homeomorphism from $(\mathbf{X}, \tilde{r}, E)$ in to $(Y, \tilde{\omega}, E)$.

4.7 Theorem

Let $f: \tilde{X} \to \tilde{Y}$ be the soft bijective mapping. Then the following statements are equivalent: . Since f is sg* open map,

- i) $f^{-1}: \tilde{Y} \to \tilde{X}$ is sg^{*} continuous.
- ii) f is sg* open.
- iii) f is sg* closed.

Proof

(i) \rightarrow (ii) Let (U,E) be any soft open set in \tilde{X} . Since $\mathbf{f}^{-1}: \tilde{Y} \rightarrow \tilde{X}$ is sg^{*} continuous, therefore $(\mathbf{f}^{-1})^{-1}(U,E) = \mathbf{f}(U,E)$ is sg^{*} open in \tilde{Y} .

(ii) \rightarrow (iii) Let (B,E) be any soft closed set in \tilde{X} , then $\tilde{X} - (B,E)$ is soft open set in \tilde{X} . Since f is sg* open map, $f(\tilde{X} - (B,E))$ is sg* open in \tilde{Y} . But $f(\tilde{X} - (B,E)) = \tilde{Y} - f(B,E)$, implies f(B,E) is sg* closed in \tilde{Y} .

(iii) \rightarrow (i) Let (B,E) be any soft closed set in \tilde{X} . Then $(f^{-1})^{-1}(U,E) = f(U,E)$ is sg* closed in \tilde{Y} . Therefore $f^{-1}: \tilde{Y} \rightarrow \tilde{X}$ is sg* continuous.

References

- [1] D. Molodtsov, Soft set theory-first results, Math, Appl. 37 (1999),(19-31).
- [2] P.K. Maji, R. Biswas and A.R. Roy, Soft set theory, Comput.Math. Appl, 45 (2003),555-562.
- [3] M. Shabir and M.Naz, On soft topological spaces. Comput, Math. Appl, 61 (2011) 1786 1799.
- [4] A. Aygünoğlu and H.Aygün, Some notes on Soft topological spaces. Neural Comput and Applic., 21 (1) (2012), 113-119
- [5] W.K Min, A note on soft topological spaces, Comput. Math.Appl., 62 (2011), 3524-3528.
- [6] I,Zorlutuna, M. Akdag, W.K. Min and S. Atmaca, Remarks on soft topological spaces, Ann, Fuzzy Math Inform., 3 (2) (2012), 171 – 185.
- [7] S Hussian and B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011) 4058 -4067 .
- [8] B.Pazar Varol and H. Aygü n, On soft Hausdorff spaces, Ann. Of Fuzzy Math. Inform., 5 (1) (2013), 15 24.
- [9] B.V.S.T. Sai and V.Srinivasa Kumar, On soft semi-separability, Int.Journalof Math. Analysis, 7 (54) (2013), 2663 – 2669.
- [10] N.Levine, Generalized closed sets in topology, Rend. Cric. Mat. Palermo, 19 (2) (1970), 89 -96.
- [11] K Kannan, Soft generalized closed sets in soft topological Spaces, Journal of Theoretical And Appl. Inform. Technology, 37 (1) (2012), 17 -21.
- [12] S. Alkhazaleh, A. R. Saleh and A.N. Hassan,"Soft multi sets theory", Applied Mathematical Sciences, 5 (72) (2011), 3561 – 3573.