Fixed Point Results for α-Admissible Mappings in Rectangular Metric Spaces

Sarita Devi¹ and Pankaj^{1,*}

¹Department of Mathematics

Baba Mastnath University, Asthal Bohar, Rohtak-124021,

Haryana, India.

guran.s196@gmail.com, maypankajkumar@gmail.com

Abstract: In this paper, we shall prove the fixed point theorems in rectangular metric space for generalized contractions using α -admissible mappings. In the end, we shall discuss about consequences of our main results.

Keywords: α -admissible mappings, complete rectangular metric space and fixed point.

2010 MSC: 47H10, 54H25.

1. Introduction: In 1922, Banach gave a principle to obtain the fixed point in the complete metric space. Since then, many researchers have worked on the Banach fixed point theorem (see [1-9], [11-22]) and tried to generalize this principle. In 2012, Samet *et al.* [23] introduced the new concepts of mappings called α -admissible mappings in metric space. Recently, in 2013 Farhan *et al.* [2] gave new contractions using α -admissible mapping in metric spaces.

In this paper, we shall generalize Farhan's *et al.* [2] contractions and give fixed point theorems for such contractions.

2. Preliminaries: To prove our main results we need some basic definitions from literature as follows:

Definition 2.1. [10] Let X be a set. A rectangular metric space (RMS) is an ordered pair (X, d) where d is a function $d : X \times X \to \mathbb{R}$ such that

- $(1) (x, y) \ge 0,$
- (2) (x, y) = 0 iff x = y,
- (3) (x, y) = d(y, x),
- (4) $(x, y) \le d(x, u) + d(u, v) + d(v, y).$

For all $x, y, u, v \in .$

Definition 2.2. [10] A sequence $\{x_n\}$ in RMS (X, d) is said to converge if there is a point $x \in X$ and for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $d(x_n, x) < \epsilon$ for every n > N.

Definition 2.3. [10] A sequence $\{x_n\}$ in a RMS (X, d) is Cauchy if for every $\in > 0$ there exists $N \in \mathbb{N}$ such that $(x_n, x_m) < \in$ for every n, m > N.

Definition 2.4. [10] RMS (X, d) is said to be complete if every Cauchy sequence is convergent.

Definition 2.5. [23] Let $f: X \to X$ and $\alpha: X \times X \to [0, \infty)$. We say that f is an α -admissible mapping if

 $(x, y) \ge 1$ implies $\alpha(fx, fy) \ge 1$, $x, y \in X$.

3. Main Results:

Theorem 3.1. Let (X, d) be a complete RMS and $T: X \to X$ be an α – admissible mapping. Assume that there exists a function $\beta: [0, \infty) \to [0, 1]$ such that, for any bounded sequence $\{t_n\}$ of positive reals, $(t_n) \to 1$ implies $t_n \to 0$ and

$$(d(Tx,Ty) + l)^{\alpha(x,Tx)\alpha(y,Ty)} \le \beta(M(x,y))M(x,y) + l, \forall x,y \in X \text{ and } l \ge 1.$$

$$(3.1)$$

Where $M(x, y) = \max \{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Tx) \cdot d(Ty, y)}{d(x, y)}, \frac{d(x, Tx) \cdot (1 + d(Ty, y))}{1 + d(x, y)} \}$

Suppose that if T is continuous and

If there exists $x_0 \in X$ such that $(x_0, Tx_0) \ge 1$, then T has a fixed point.

Proof: Let $x_0 \in X$ such that $(x_0, Tx_0) \ge 1$. Construct a sequence $\{x_n\}$ in X as $x_{n+1} = Tx_n$, $\forall n \in N$.

If $x_{n+1} = x_n$, for some $n \in N$, then $Tx_n = x_n$ and we are done.

So, we suppose that $(x_n, x_{n+1}) > 0, \forall n \in N$.

Since T is α -admissible, there exists $x_0 \in X$ such that $(x_0, Tx_0) \ge 1$ which implies $(x_0, x_1) \ge 1$.

Similarly, we can say that $(x_1, x_2) = \alpha(Tx_0, T^2x_0) \ge 1$.

By continuing this process, we get

 $(x_n, x_{n+1}) \ge 1, \forall n \in N.$

(3.2)

By using equation (3.2), we have

 $d(x_n, x_{n+1}) + l = d(Tx_{n-1}, Tx_n) + l \le (d(Tx_{n-1}, Tx_n) + l)^{\alpha(x_n-1, Tx_{n-1})\alpha(x_n, Tx_n)}.$ Now using equation (3.1), we get

$$d(x_{n}, x_{n+1}) + l \leq \beta(M(x_{n-1}, x_{n}))M(x_{n-1}, x_{n}) + l,$$

$$(x_{n-1}, x_{n}) = \max\{d(x_{n-1}, x_{n}), (x_{n-1}, Tx_{n-1}), (x_{n}, Tx_{n}), \frac{d(x_{n-1}, Tx_{n-1}).d(Tx_{n}, x_{n})}{d(x_{n-1}, x_{n})},$$

$$\frac{d(x_{n-1}, Tx_{n-1})(1 + d(Tx_{n}, x_{n}))}{1 + d(x_{n-1}, x_{n})}\}$$

$$(3.3)$$

$$= \max \{ (x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}) \}$$

Assume that if possible $d(x_n, x_{n+1}) > d(x_{n-1}, x_n)$.

Then, $(x_{n-1}, x_n) = d(x_n, x_{n+1})$. Using

this in equation (3.3), we get

$$(x_{n}, x_{n+1}) < \beta(d(x_{n}, x_{n+1}))d(x_{n}, x_{n+1})$$
(3.4)

 \Rightarrow (x_n, x_{n+1}) < $d(x_n, x_{n+1})$, which is a contradiction. So

$$(x_n, x_{n+1}) \le d(x_{n-1}, x_n), \forall n.$$

It follows that the sequence $\{(x_n, x_{n+1})\}$ is a monotonically decreasing sequence of positive real numbers. So, it is convergent and suppose that $\lim_{n \to \infty} (x_n, x_{n+1}) = d$. Clearly, $d \ge 0$.

Claim: d = 0.

Equation (3.4) implies that

$$\frac{d(x_{n},x_{n+1})}{d(x_{n-1},x_{n})} \leq (d(x_{n-1},x_{n}) \leq 1,$$

Which implies that $\lim_{n\to\infty} (d(x_{n-1}, x_n) = 1.$

Using the property of the function β , we conclude that

$$\lim_{n \to \infty} (x_n, x_{n+1}) = 0.$$
(3.5)

In the similar way, we can prove that

$$\lim_{n \to \infty} (x_n, x_{n+2}) = 0.$$
(3.6)

Now, we will show that $\{x_n\}$ is a Cauchy sequence. Suppose, to the contrary that $\{x_n\}$ is not a Cauchy sequence. Then there exists $\in > 0$ and sequences (k) and n(k) such that for all positive integers k, we have

$$n(k) > m(k) > k, d(x_{n(k)}, x_{m(k)}) \ge \in \text{ and } d(x_{n(k)}, x_{m(k)-1}) < \in.$$

By the triangle inequality, we have

$$\epsilon \leq d(x_{n(k)}, x_{m(k)}) \leq d(x_{n(k)}, x_{m(k)-1}) + d(x_{m(k)-1}, x_{m(k)+1}) + d(x_{m(k)-1}, x_{m(k)})$$

$$< \epsilon + d(x_{m(k)-1}, x_{m(k)+1}) + d(x_{m(k)-1}, x_{m(k)}),$$

for all $k \in \mathbb{N}$.

Taking the limit as $k \to +\infty$ in the above inequality and using equations (3.5) and (3.6), we get

$$\lim_{k \to +\infty} (x_{n(k)}, x_{m(k)}) = \epsilon.$$
(3.7)

Again, by triangle inequality, we have

$$d(x_{n(k)}, x_{m(k)}) - d(x_{m(k)-1}, x_{m(k)}) - d(x_{n(k)-1}, x_{n(k)}) \le d(x_{n(k)-1}, x_{m(k)-1})$$

$$d(x_{n(k)-1}, x_{m(k)-1}) \le d(x_{m(k)}, x_{m(k)-1}) + d(x_{n(k)}, x_{m(k)}) + d(x_{n(k)-1}, x_{n(k)}).$$

Taking the limit as $k \to +\infty$, together with (3.5) - (3.7), we deduce that

$$\lim_{k \to +\infty} (x_{n(k)-1}, x_{m(k)-1}) = \epsilon.$$
(3.8)

From equations (3.1), (3.2), (3.6) and (3.8), we get

$$d(x_{n(k)}, x_{m(k)}) + l \leq (d(x_{n(k)}, x_{m(k)}) + l)^{\alpha(x_{n(k)-1}, Tx_{n(k)-1})\alpha(x_{m(k)-1}, Tx_{m(k)-1})},$$

$$= (d(Tx_{n(k)-1}, Tx_{()}) + l^{\alpha(x_{n(k)-1}, Tx_{n(k)-1})\alpha(x_{m(k)-1}, Tx_{m(k)-1})})$$

$$\leq (M(x_{n(k)-1}, x_{m(k)-1})M(x_{n(k)-1}, x_{m(k)-1}) + l \qquad (3.9)$$

$$\begin{split} M(x_{n(k)-1}, x_{m(k)-1}) &= \max \{ d(x_{n(k)-1}, x_{m(k)-1}), d(x_{n(k)-1}, x_{n(k)}), d(x_{m(k)-1}, x_{m(k)}), \\ \frac{d(x_{n(k)-1}, Tx_{n(k)-1}).d(Tx_{m(k)-1}, x_{m(k)-1})}{d(x_{n(k)-1}, x_{m(k)-1})}, \frac{d(x_{n(k)-1}, Tx_{n(k)-1})(1 + d(Tx_{m(k)-1}, x_{m(k)-1}))}{1 + d(x_{n(k)-1}, x_{m(k)-1})} \}, \end{split}$$

 $= \max \{(x_{n(k)-1}, x_{m(k)-1}), d(x_{n(k)-1}, x_{n(k)}), d(x_{m(k)-1}, x_{m(k)}), d(x_{m(k)-1},$

 $\frac{d(x_{n(k)-1},x_{n(k)}).d(x_{m(k)-1},x_{m(k)})}{d(x_{n(k)-1},x_{m(k)-1})}, \quad \frac{d(x_{n(k)},x_{n(k)-1})(1+d(x_{m(k)-1},x_{m(k)}))}{1+d(x_{n(k)-1},x_{m(k)-1})}\}.$

Taking $k \to \infty$, we have

 $(x_{n(k)-1}, x_{m(k)-1}) = \max \{ \in, 0, 0, 0, 0 \}.$ So,

equation (3.9) implies that

$$d(x_{n(k)+1}, x_{m(k)+1}) \le \beta(M(x_{n(k)}, x_{m(k)})M(x_{n(k)}, x_{m(k)}) \le 1,$$

Letting $k \to \infty$, we get

 $\lim_{k\to\infty} (d(x_{n(k)}, x_{m(k)}) = 1.$

By using definition of β function, we get

 $\Rightarrow \lim_{k\to\infty} d(x_{n(k)}, x_{m(k)}) = 0 < \epsilon, \text{ which is a contradiction.}$

Hence, $\{x_n\}$ is a Cauchy sequence.

Since (X, d) is a complete space, so $\{x_n\}$ is convergent and assume that $x_n \to x$ as $n \to \infty$.

Since T is continuous, then we have

$$Tx = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} x_{n+1} = x.$$

So, x is a fixed point of T.

Theorem 3.2. Assume that all the hypothesis of Theorem 3.1 hold. Adding the following condition:

If x = Tx, then $(x, Tx) \ge 1$.

We obtain the uniqueness of fixed point.

Proof: Let *z* and z^* be two distinct fixed point of *T* in the setting of Theorem 3.1 and above defined condition holds, then

 $(z, Tz) \ge 1$ and $\alpha(z^*, Tz^*) \ge 1$.

So, $d(Tz, Tz^*) + l \leq (d(Tz, Tz^*) + l)^{\alpha(z, Tz)\alpha(z^*, Tz^*)}$

$$\leq \beta(M(z, z^*))M(z, z^*) + l.$$
 (3.10)

Where $M(z, z^*) = \max \{ d(z, z^*), d(Tz, z), d(Tz^*, z), , \frac{d(z, Tz).d(T z^*, z^*)}{d(z, z^*)}, \frac{d(z, Tz)(1+d(T z^*, z^*))}{1+d(z, z^*)} \}$

 $= d(z, z^*).$

So, equation (3.10) implies

 $d(z, z^*) = d(Tz, Tz^*) \le \beta(d(z, z^*))d(z, z^*)$ $\Rightarrow (d(z, z^*)) = 1$ $\Rightarrow (z, z^*) = 0 \Rightarrow z = z^*.$

Corollary 3.3. (Farhan *et al.* [2]) Let (X, d) be a complete RMS and $T : X \to X$ be an α –admissible mapping. Assume that there exists a function $\beta : [0, \infty) \to [0, 1]$ such that, for any bounded sequence $\{t_n\}$ of positive reals, $(t_n) \to 1$ implies $t_n \to 0$ and

$$(d(Tx,Ty) + l)^{\alpha(x,Tx)\alpha(y,Ty)} \leq \beta(d(x,y))d(x,y) + l$$

for all $x, y \in X$ where $l \ge 1$. Suppose that if *T* is continuous and there exists $x_0 \in X$ such that $(x_0, Tx_0) \ge 1$, then *f* has a fixed point.

Proof: Taking (x, y) = d(x, y) in Theorem 3.1, one can get the proof.

Corollary 3.4. (Farhan *et al.*[2]) Assume that all the hypotheses of Corollary 3.3 hold. Adding the following condition:

(a) If x = Tx, then $(x, Tx) \ge 1$,

we obtain the uniqueness of the fixed point of T.

Proof: Taking (x, y) = d(x, y) in Corollary 3.3.

References:

- Akbar F, Khan A.R., "Common fixed point and approximation results for noncommuting maps on locally convex spaces", *Fixed Point Theory Appl.* 2009, Article ID 207503, 2009.
- 2. Akbar Farhana, Salimi Peyman, Hussain Nawab," α –admissible mappings and related fixed point theorems", *Hussain et al. Journal of Inequalities and Applications* 2013, 2013:114
- Aydi, H, Karapinar, E, Erhan, "I: Coupled coincidence point and coupled fixed point theorems via generalized Meir-Keeler type contractions", *Abstr. Appl. Anal.* 2012, Article ID 781563, 2012.
- Aydi, H, Karapinar E, Shatanawi W, "Tripled common fixed point results for generalized contractions in ordered generalized metric spaces", *Fixed Point Theory Appl.* 2012., 101, 2012.
- Aydi H, Vetro C, Karapinar E, "Meir-Keeler type contractions for tripled fixed points", *Acta Math. Sci.* 2012, 32(6):2119–2130, 2012.
- Aydi H, Vetro C, Sintunavarat W, Kumam P, "Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces", *Fixed Point Theory Appl.* 2012, 124, 2012.

- 7. Berinde V, "Approximating common fixed points of noncommuting almost contractions in metric spaces", *Fixed Point Theory*, 11(2):179–188, 2010.
- 8. Berinde V, "Common fixed points of noncommuting almost contractions in cone metric spaces", *Math. Commun.*, 15(1), 229–241, 2010.
- 9. Berinde V, "Common fixed points of noncommuting discontinuous weakly contractive mappings in cone metric spaces", *Taiwan. J. Math.* 14(5), 1763–1776, 2010.
- Branciari A., "A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces", *Publicationes Mathematicae Debrecen*, 57(1-2)(2000), 31-37.
- 11. Bryant, Victor, "Metric spaces: iteration and application", Cambridge University Press. ISBN 0-521-31897-1, 1985.
- Ciric L, Abbas M, Saadati R, Hussain N, "Common fixed points of almost generalized contractive mappings in ordered metric spaces", *Appl. Math. Comput.* 217, 5784–5789, 2011.
- 13. Ciric L, Hussain N, Cakic N, "Common fixed points for Ciric type *f* -weak contraction with applications", *Publ. Math. (Debr.)*, 76(1–2), 31–49, 2010.
- 14. Ciric LB, "A generalization of Banach principle", Proc. Am. Math. Soc. 45, 727–730, 1974.
- Edelstein, M, "On fixed and periodic points under contractive mappings", J. Lond. Math. Soc. Vol 37, 74–79, 1962.
- 16. George, A. and Veeramani, P.,"On some results in fuzzy metric spaces", *fuzzy sets* and systems, 64, 395-399, 1994.
- 17. Harjani J, Sadarangani K, "Fixed point theorems for weakly contractive mappings in partially ordered sets", *Nonlinear Anal.* 71, 3403–3410, 2009.
- 18. Hussain N, Berinde V, Shafqat N, "Common fixed point and approximation results for generalized ϕ –contractions", *Fixed Point Theory* 10, 111–124, 2009.
- 19. Hussain N, Cho YJ, "Weak contractions, common fixed points and invariant approximations", *J. Inequal. Appl.* 2009, Article ID 390634, 2009.
- Hussain N, Jungck G, "Common fixed point and invariant approximation results for noncommuting generalized (f,g)-nonexpansive maps", J. Math. Anal. Appl. 321, 851–861, 2006.
- 21. Hussain N, Khamsi MA, Latif A, "Banach operator pairs and common fixed points in hyperconvex metric spaces", *Nonlinear Anal.* 74, 5956–5961, 2011.

- 22. Hussain N, Khamsi MA, "On asymptotic pointwise contractions in metric spaces", *Nonlinear Anal.* 71, 4423–442, 2009.
- 23. Samet B, Vetro C, Vetro P, "Fixed point theorem for α–ψ contractive type mappings", *Nonlinear Anal.* 75, 2154–2165, 2012.